DIASTEREOCONTROLLED NICKEL(0)- AND PALLADIUM(0) CATALYZED "METALLO-ENE-TYPE" **CYCLIZATIONS/CARBONYLATIONS**

Wolfgang Oppolzer^{*}, Thomas H. Keller, Manuel Bedoya-Zurita and Charles Stone Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract: Treatment of 1-iodo{acetoxy}-2,7-octadienes 1 and 1-iodo{acetoxy}-2-en-7-ynes 12 with Ni(COD)₇/dppb (THF/MeOH) or Pd(dba)₂/PPh₃ (AcOH, then CH₂N₂) under carbon monoxide furnished chemo- and
stereoselectively either bicyclic ketoesters 7 (from 1) and 15 (from 12) or *trans*-substituted monocyclic products 5 (from 1) and 14 (from 12), but all-cis-hexahydroindole 11 (from acetoxycyclohexene 9).

Previously we have reported Ni(CO)₃PPh₃-catalyzed "metallo-ene cyclization"/carbonylation sequences 1a (X = I) \rightarrow 6a+7a, 12a (X = I) \rightarrow 14a and 12c (X = I) \rightarrow 14c+15c (Schemes 1, 3; Tables 1, 2, entries 1, 9 and 12) ^{1,2}.

A more recent communication described the related palladium(0)-catalyzed conversion of $1 (Y = CH_2, X = OAC)$ into the free carboxylic acid of $5 (Y = CH_2, 50\%)$ together with bicyclic enone $8 (Y = CH_2, 20\%)$ and a regioisomer (10%) ³⁾.

Before employing the "metallo-ene"/carbonylation protocol in synthesis we addressed the following issues:

- 1) verify if the nickel catalyzed process $(2 \rightarrow 4)$ is generally cis-stereoselective;
- 2) improve the *trans*-diastereoselectivity of the "palladium-ene" step $2 \rightarrow 3^{4}$;
- 3) direct the reaction sequence more distinctly either towards monocyclization $(1 \rightarrow 6, 12 \rightarrow 14)$ or, bicyclization $(1 \rightarrow 7, 12 \rightarrow 15)$.

		Y	x	$\text{Catalyst}^{a)}$	Reaction	Product ⁶⁾ Yields [%]			
					conditions ^{b)5)} (Time [h])	5	6	7 ^c	8
	\mathbf{a}	NTs		$Ni(CO)_{3}PPh_{3}$	A(20)		28	47 $(4:1)$	$\overline{}$
$\overline{2}$	\mathbf{a}	NT _s		$Ni(COD)_{2}/dppb$	A(12)	$\overline{}$	-	80(10:1)	$\qquad \qquad -$
3	\mathbf{a}	NTs	OAc	$Pd(dba)_{2}/PPh_{3}$	B(12)	52.5	0.5	16(8:1)	$\qquad \qquad \blacksquare$
4	a	NTs	OAc	$Pddba)_{2}/dppb$	B(12)	16 $(87)^d$	$\overline{}$		
5	b	NCOCF ₃	OAc	$Pddba)_{2}/PPh_{3}$	B(6)	70			
6	c	C(CO ₂ Me) ₂	1	$Ni(CO)_{3}$ PPh ₃	A(36)	3.2	14.8	62 $(4:1)$	
7	c	C(CO ₂ Me) ₂		$Ni(COD)_{2}/dppb$	A(30)	3.7	4.3	66(4:1)	$\overline{}$
8	c	C(CO ₂ Me) ₂	OAc	$Pddba)_{2}/PPh_{3}$	B(20)	62.4	0.6	10(3:1)	5

Table 1 Ni(O)- and Pd(0) Catalyzed Allylation/Carbonylation of 1 -Iodo(Acetoxy)-2,7-octadienes 1

a) Ni(CO)_3 PPh₃ prepared before use ⁷); other catalysts formed in situ from Pd(dba)₂, PPh₃ (1:3) and dppb (1:1) under CO or, by addition of dppb to Ni(COD)₂ (1:1) under CO. b) A : 25 mol% Ni(0), THF/MeOH 4:1, CO (1 atm r.t.; $B : i$) 10 mol% Pd(0), HOAc, CO (1 atm), 45°C; ii) addition of H_2O , 40°C, 1 h., evaporation; iii) CH₂N₂, CH2C12. c) Ratio of 7 and its C(2)-epimer **in parenthesis. d) Yield** based on recovered **la** in parenthesis.

Indeed, changing the ligands around the nickel atom improved significantly the product ratio $\frac{7}{6}$. Thus, stirring iodide la with a catalyst, prepared *in situ* from Ni(COD)₂ and dppb (0.25 mol-equiv. each), in THF/MeOH (4:1) under carbon monoxide (1 atm) at r.t. gave bicyclic ketoester $7a^{6}$ (10:1-mixture of C(2)-epimers) in 80% yield and no trace of pyrrolidines $\frac{1}{2}$ or $\frac{1}{2}$ (entry 2). Analogous treatment of acetate $\frac{1}{2}$ with Pd(dba)₂/PPh₃ in acetic acid under CO at 45°C, addition of water and esterification (CH₂N₂) yielded a mixture of products $\frac{5}{6/2}$ (76 : 0.8 : 23.2); after chromatography, pyrrolidines 5a/6a (97 :I) were obtained in 53% yield (entry 3). Exclusive formation of the *trans*substituted pyrrolidine $\frac{5a}{2}$ ⁶⁾ was achieved on using Pd(dba)₂/dppb (0.1 mol-equiv. each) but with low conversion (entry 4). However, subjecting the N-trifluoroacetyl precursor 1b to the usual "Pd(dba) $2/PPh_3$ -catalyzed" reaction conditions furnished trans-pyrrolidine $5b^{6}$ (70%) as a single product.

Similar (although less dramatic) trends were observed with malonates *Ic* i.e., predominant formation of either bicyclic product $7c^{6}$) (66%) employing Ni(COD)₂/dppb or, monocyclic trans-cyclopentane $5c^{6}$) (62%) using Pd(dba)₂/PPh₃ (entries 7, 8). The favoring of the *C*(8)/*C*(2)-*trans* relation (1 \rightarrow 2 \rightarrow 3 \rightarrow 5) in the Pd(0)-catalyzed process reflects the (E) -configuration of the allylpalladium species 2^{8} .

A (Z)-allylpalladium intermediate, on the other hand, was expected to provide only $C(8)/C(2)$ -cis products 8). Indeed, treatment of acetate 2^{2} with Pd(dba)₂/PPh₃ under CO in AcOH, addition of water and esterification afforded exclusively all-cis-hexahydroindole $\overline{11}$ ⁶) (Scheme 2).

Intramolecular allylnickel or -palladium/alkyne insertion-carbonylation sequences (Scheme 3, Table 2) resulted in a highly stereoselective generation of the $C(7)/C(8)$ olefinic bond regardless of the metal and consistent with a suprafacial metallo-allylation of the acetylene unit. However, the product ratio $14/15$ was clearly dependent on the choice of metal and ligands.

Table 2 Nickel(0)- and Palladium(0) Catalyzed Allylation/Carbonylation of 1-Iodo{Acetoxy}octa-2-en-7-ynes 12

a) Comments as in Table 1.

Thus, Ni(CO)₃PPh₃-catalyzed allylation/methoxycarbonylation furnished pyrrolidine 14a (69%) as the sole product from iodide $12a^{2}$ which, on the other hand, employing Ni(COD)₂/dppb provided bicyclic enone $15a^{6}$ as the major product (57%) (entries 9, 10). Bicyclization of acetate 12a to 15a was also favored over monocyclization $(12a \rightarrow 14a)$ using Pd(dba)₂/PPh₃ in acetic acid (entry 10). More strikingly, malonates 12c (X = I) and 12c (X = OAc) gave only bicyclization product 15c ²⁾ utilizing Ni(COD)₂/dppb and Pd(dba)₂/PPh₃, respectiv

It follows that cis/trans-diastereoselectivities ($2 \rightarrow 3$ or 4) as well as monocyclization/bicyclization product ratios $(6/7)$ or $14/15$) depend on the nature of the bridge moiety Y but more prominently on the catalyst. For controlling the relative configuration of stereogenic centers $C(2)/C(3)$ in products 7 and 15 it seems that the Ni(COD)₂/dppb protocol is superior over the Pd(dba)₂/PPh₃ alternative. Stereoselective functionalizations of the enone moiety in products 15 offers interesting perspectives as indicated by the catalytic hydrogenation of 15c (Pd/C, H₂, EtOH) yielding bicyclo[3.3.0]octanone $7c$ (95%). Simple 2,7-dienes or 2-en-7-ynes are thus readily converted into annulated 5-membered ring systems involving the regio- and stereoselective formation of four carbon-carbon bonds and of three stereogenic centers which may be of value in synthesis.

Acknowledgements: Financial support of this work by the Swiss National Science Foundation, Sandoz AG, Basel, and *Givaudan SA,* Vernier is gratefully acknowledged. We also thank Mr. *J.P. Saulnier,* Mr. *A. Pinto* and Mrs. *D. Clément* for NMR and MS measurements.

REFERENCES AND NOTES

- 1) Examples and definition of transition-metal catalyzed "metallo-ene cyclizations": a) W. Oppolzer, J.-M. Gaudin, Helv. Chim. Acta 1987, 70, 1477; W. Oppolzer, Pure & Appl. Chem. 1988, 60, 39; W. Oppolzer, R.E. Swenson, W. Pachinger, Helv. Chim. Acta 1989, 72, 14; b) Review: W. Oppolzer Angew. Chem. 1989, 101, 39; Angew. Chem. *Int. Ed. Engl. 1989. 28, 38.*
- *2)* W. Oppolzer, M. Bedoya-Zurita, C.Y. Switzer, *Tetrahedron Lett. 1988, 29, 4433.*
- *3)* K. Yamamoto, M. Terakado, K. Murai, M. Miyazawa, J. Tsuji, K. Takahashi, K. Mikami, *Chem. Lett. Ls_Be, 955.* We thank Professor K. Yamamoto for kindly communicating to us this work prior to publication.
- *4)* For the first examples of kinetically controlled cis/trans-selectivities of "palladium-ene" cyclizations see: W. Oppolzer, J.-M. Gaudin, M. Bedoya-Zurita, J. Hueso-Rodriguez, T.M. Raynham, C. Robyr, *Tetrahedron Lett. m, 29, 4709.*
- 5) The following procedures are representative: Procedure A: To avoid handling toxic Ni(CO)₄ the latter was prepared *in situ* as follows. A solution of freshly prepared Ni(COD)₂ (0.25 mol-equiv.) in degassed THF/MeOH (4:1) was stirred under CO (1 atm) at 0°C for 30 min. The colorless solution of Ni(CO)₄ was warmed to r.t.. Addition of dppb (0.25 mol-equiv. in THF/MeOH), stirring for 30 min, followed by addition of allyl iodide 1 or 12, stirring under CO (1 atm) at r.t. for 12-30h, workup and flash chromatography yielded cyclized product(s). Procedure B: A solution of allyl acetate $1, 2$ or 12 in degassed AcOH was added to a mixture of Pd(dba)₂ (0.1 mol-equiv.) and PPh₃ (0.3 mol-equiv.) [or dppb (0.1 mol-equiv.)] under argon. After evacuation at &C the flask was filled with CO (1 atm). Stirring the mixture at 45°C for 2-3631 (until disappearance of starting material), addition of water, stirring at 45°C for 1h, evaporation and treating the residue with CH_2N_2 (excess) in CH_2Cl_2 , r.t., evaporation and chromatography gave cyclized product(s).
- *6)* All new compounds were characterized by IR, 'H-NMR, 'sC-NMR and MS. The configuration of cyclization products was established *via* NOE measurements ^{2,4}) as exemplified by that of <u>11</u> (CDC1₃): $\delta H_7 = 2.10(m, 1H, 1)$ spin saturation at $\delta = 3.07 \rightarrow \text{NOE: } 12.2\%$); $\delta H_3 = 3.07(m, 1H)$; $\delta H_4 = 3.75(m, 1H)$, spin saturation at $\delta = 3.07 \rightarrow$ NOE: 11.2%)
- 7) W.F. Edgell, M.P. Dunkle, *Inorganic Chem. 1965, 4,* 1629
- 8) "Metallo-ene-type" insertion of an olefinic bond into a (Z) -allylpalladium unit, linked by a bridge of three atoms is unlikely to give a *trans-substituted five-membered ring since this would imply a strained transition* state c.f., $ref.⁴$.

(Received in Germany *28* August 1989)